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Abstract--This paper compares several methods of finding the surface heat flux using transient temperature 
measurements inside a heat-conducting body. Experimental data is used with a known heat flux history. 
The methods include function specification with several future approximations, Tikhonov regularization, 
iterative regularization and specified functions over large time regions with Green's functions. The first 
three methods are used with the residual principle and the results are quite similar. If the heat flux has a 
simple time variation over large time regions, taking advantage of that feature can improve the results, as 

shown by the Green's function analysis. Copyright © 1996 Elsevier Science Ltd. 

INTRODUCTION 

The inverse heat conduction problem (IHCP) is the 
determination of the surface heat flux history from 
interior transient temperature measurements in a 
solid. Although many papers and books have been 
written on the IHCP, few provide both experimental 
heat flux values and a comparison of several methods. 
This paper includes these features and a use of the 
residual principle. 

In Alifanov [1] a history of the IHCP is given, going 
back even to the nineteenth century. However, the 
earliest engineering paper may be due to Shumakov 
[2] in 1957 in the Soviet Union. Better known in the 
United States is the paper by Stolz in 1960 [3]. The 
papers by Shumakov and Stolz solved the problem in 
a sequential manner that did not change the basic 
physical treatment of the problem ; they did not con- 
sider the lag and damping of the measurements (par- 
ticularly as the time steps become small), which result 
in the problem becoming ill-posed. A method that 
treated the lag/damping effects is due to Beck and is 
called the function specification method [4-10]. It has 
the two advantages that (a) it is simple in concept and 
(b) it does not change the physics of the problem, 
since the intrinsic parabolic nature of the problem is 
unchanged. The function specification method (FSM) 
is sequential in nature and thus is computationally 

efficient and, perhaps more important, the measure- 
ments in the distant future do not affect the 'present' 
estimates, as for other methods to be described. 

Another important method that is simple in concept 
and has sequential aspects is the mollification method 
of Murio [11]. This method has a substantial math- 
ematical basis. 

Two other very important methods are Tikhonov 
regularization [8, 12] and iterative regularization [1, 
13]. These methods are usually presented as whole 
domain methods in which all the heat flux components 
are simultaneously estimated for all times (and 
position, if multidimensional). Two advantages of 
these methods are that they have had rigorous math- 
ematical investigation and can be applied very gener- 
ally. They are clearly very important methods. The 
generality of the whole domain analysis comes at the 
expense of greater computational and programming 
burdens and more difficult analysis. Also, it changes 
the physical problem from one with causal aspects to 
one in which the later measurements affect even the 
earliest times. However, ref. [8] shows that the sequen- 
tial concepts in the FSM can be incorporated in the 
Tikhonov regularization method. The whole domain 
concept can also be applied using Green's functions, 
provided the problem is linear. 

The basic objective of this paper is to provide a 
realistic comparison of several methods for the solu- 
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NOMENCLATURE 

volumetric heat capacity [J m 3 K ~] x 
Green's function [m- ~] X 
number  of measured times y 
number  of sensor locations 
thermal conductivity [W m -  ] K ]] Y 
length of a region [m] 
number of measurements at time t 
heat flux [W m 2] 
number of future times for function 
specification 
standard deviation of Y 
sum of squares function, equation ( 11 ) 
or (12) 
S for function specification method 
time [s] 
temperature [C]  

coordinate 
sensitivity coefficient, equation (9) 
coordinate for Green's function 
analysis 
measured temperature [°C]. 

Greek symbols 
Tikhonov regularization parameter 

a root mean square for q [W m -2] 
r dimensionless time. 

Subscripts 
i time index 
/ space index 
M time index 
rms root mean square. 

tion of the IHCP. The same criterion (namely the 
residual principle) for selecting the various parameters 
is used for most of the methods. For the FSM, the 
parameter is the number  of future times ; for the iter- 
ative regularization method, the parameter is the num- 
ber of iterations ; and for Tikhonov regularization, it 
is the regularizing parameter. Although zeroth-, first- 
and second-order Tikhonov regularizations exist, this 
paper focuses on the zeroth-order. 

A brief outline of the paper is given. First, a math- 
ematical description of the IHCP is displayed. Next an 
experiment and associated measurements are shown. 
This is followed by a comparison of several methods, 
and finally conclusions. 

MATHEMATICAL DESCRIPTION OF THE IHCP 

The one-dimensional IHCP for three layers of 
different materials is mathematically described as (see 
Fig. 1) 

I- OT,7 r)T, 
~,x[k , .~XJ= C,.~d ,L~ , < x < L,, s = 1,2,3. 

(la) 

The initial temperature is To in each region. Measure- 
ments are given at J locations and 

~ ~T~+ L 
k ~ x  L,: =k~+] ~x c:' s =  1,2 ( lb)  

LI,_:=L+,IL:, s=1 ,2  (lc) 

eT 
0x L, = 0 (ld) 

T~.(x,O) = To, s = 1,2,3 (le) 

I times, 

T(x ,  t i )= Yi(t,), i =  1 . . . . .  1; j =  1 . . . . .  J. 

(2) 

The objective is to calculate the surface heat flux 
history (at x = 0). 

caT] x=0 - k ,  ~ = q(t) = ? (3) 

EXPERIMENT 

An experiment was done with two identical speci- 
mens with a mica heater between them ; this approach 
yields symmetric boundary conditions, with equal 
heat fluxes toward each side at the heater center line. 
Figure 1 shows only one-half of the symmetric 
geometry. At the nonheated surfaces of the specimen, 
ceramic insulation was used. The plane heating 
element was in the center of the mica heater (x = 0) 
and was very thin compared with the total thickness 
of the mica heater (0.86 mm). Therefore, an unknown 
heat flux condition was used at x = 0 in the IHCP. 
Parameter techniques were used to estimate the ther- 
mal properties of each layer; see Table 1. One half of  
the mica thickness and the interface conductance were 
modeled as a single effective material. A series of short 
experiments (about 1 s in duration) was done to esti- 
mate the effective thermal properties of the mica-inter- 
face conductance [14, 15]. 

At the mica-specimen interface, seven thermo- 
couples produced consistent readings. Rather than 
using seven separate values, an average of these read- 
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Fig. 1. Schematic of one half of the geometry of the experiment. The missing lower half is symmetric about 
x = 0 .  

Table 1. Thermal properties of test specimen 

Thermal conductivity Volumetric heat capacity x 10 6 Thickness 
Material (Wm -~ K -~) (J m -3 K ~) (mm) 

Mica heater 0.142 2.03 0.43 
Carbon-carbon 3.40 1.42 9.14 
Ceramic insulation 0.088 0.419 25.4 

ings at each time step was used. Let the temperature 
at time ti and sensor j  be denoted, Yij. The average at 
time tg is 

1 iv 
Yi = ~ jE=1 Yij, ( 4 )  

where N = 7. The average temperature histories at 
both the mica/specimen and specimen/insulation 
interfaces are shown in Fig. 2. The mica/specimen 
temperature history contains much more information 
regarding the surface q and thus it is the only one used 
herein. The estimated standard deviation at each time 
t~ is calculated using 

4 8 ,  , , , , i , , ' , i , ' ' ' i ' ' ' ' 

4 6  ~ l ~ . / l ~ s u l .  

~ 44 
o£ 42 

4o 

~ 38 
~ 36 
[" 34 

32! ~ "  [ o MicaJSl~. 
3 (  . . . .  i , , , , I , , , J J . . . .  

0 10 20 30 40 

Time,  s 

Fig. 2. Sensor-averaged, transient temperatures at the 
mica/specimen and specimen/insulation interfaces from 

experiment. 

1 N 1/2 

~e, = l ~ E  ( V, , -  I~i): (5) 

which varies as shown in Fig. 3. It is roughly constant 
during the heating period (2-22 s) at about  0.115 K 
and about  0.04 when the heater is off. For  simplicity 
the average of  the standard deviations in Fig. 3 is 
used, which is about  0.083 K, and is shown. This is 
the value that is to be used in the residual principle 
for the various regularizing parameters. The estimated 
heat fluxes are not  usually sensitive to this assumption. 
In the remainder of  the paper ]7,. will be simply written 
as  Yi. 

I H C P  E S T I M A T I O N  M E T H O D S  

There are many methods for solving the IHCP.  
Those used herein are described briefly. The function 
specification method is described first. It can be used 
for linear and nonlinear problems;  finite differences, 
finite elements, or numerical convolution can be used ; 
and various approximations for specified functions 
are possible. Briefly the method is to minimize with 
respect to the heat flux q~ the sum of  squares function, 

SM = ~ (YM+,-I -- TM+,-1) z (6) 
i=1 

which involves the times tM, tM+ ~ . . . . .  tM+r-- I. [Only 
one temperature sensor is assumed in equation (6).] 
Hence, ' future '  information is used to obtain qM. Some 
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Fig. 3. Standard deviation of average temperature at the mica/specimen interface. 

functional form for q( t )  for t~ t to tM+, ~ is selected, 
the simplest being 

qM+i I = q . ` ' ,  i =  1,2 . . . . .  r. (7) 

The calculated temperature T~ . ,  ] is expanded in 
a Taylor series for q,`', 

T`'~, , =  T,`'+,_,I,, .... +X~,+,  ,..`'(q,,,-4,`" ,), 

(8) 

where X.`'+~ ~.M is the sensitivity coefficient defined by 

(~ TM+~ 1.M 
XM+i I..~ - (9) ?'qM 

The resulting algorithm after minimizing equation 
(6) with respect to qM is 

4, , ,  = 4 ~  , 

[YM+, ,--TM~, ,I,,,,= . . . .  ,~,, ,]XM+, ,,,`" 
i - I  

(10) 

Only qg is retained for time tg ,  and M is increased 
by one and the procedure is repeated. In this paper, 
the r value is selected using the residual principle. The 
bias caused by the algorithm is also significant [8], but 
is not considered here. 

The iterative regularization method minimizes the 
whole domain function 

S =  ~ ( Y ~ - T , )  2, (11) 
i I 

where I is the total number  of measurements (about 
200 in this experiment). The iterative regularization 
method of Alifanov [1] uses two solutions besides the 

direct problem [equations (1, 2)]. These solutions are 
the sensitivity and adjoint problems. Moreover, the 
conjugate gradient method is used. More details are 
given in refs. [1, 10]. The stopping parameter is the 
number  of iterations, which is determined by the 
residual principle. For  the same number, L of 
measurements as q components,  the minimum of S is 
zero for equation (l 1), resulting in an ill-posed and 
unstable method for small time steps. However, if 
the number  of iterations is limited by the residual 
principle, the method becomes stable, but S is n o t  

minimized. It is a nonlinear method, even if the differ- 
ential equations are linear. 

Zeroth-order Tikhonov regularization adds a term 
to S defined by equation (11) to get 

5 =  (,2) 
i - - I  i - - I  

where ~ is the regularization parameter. In this 
method, S is minimized and it can be done many ways. 
For many components and whole domain estimation 
the adjoint-conjugate gradient method is appropriate 
[1, 10]. In Tikhonov regularization, the minimum of 
S given by equation (12) is not  zero. The parameter c~ 
is chosen using the residual principle [l, 13]. 

In each of the above methods it is necessary to 
describe the variation of q( t ) .  A simple method is to 
approximate the heat flux by constant segments, 

q( t )  = q g ,  t g  ] < t < t M ,  (13) 

where tM = M A t ,  M = 1 ,2  . . . . .  1. Another  approxi- 
mation is linear interpolation, 

t - - t g  , 
q ( t ) = q g  , + ( q g - - q g  ,) A t  (14) 

fort,`" ~ < t < t g .  

For the FSM (and other methods), many tem- 
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porary specified functions are possible including the 
constant  given by equation (7). For  example, there is 
linear with time, 

qM++--' = glM--, +(qM--qM-- , )% (15) 

tM+i_l --tM_l 
0 < z~ < r. (16) zi -- A t  ' 

The r symbol denotes the number  of ' future '  time 
steps. A parabolic approximation with a zero value 
for the first time derivative at ri = r is 

2rz i --  ..ci 2 
qM+, ~ =dlM--~+(qM--dlM--~) 2r--1 " (17) 

, , ~ ,  , , , _ L - , .  ,. , -  , , ' - ] 2 0 0 0 ~  

\ Slme. fuacti . . . .  "]1800 

\ ', + pmbolic :1 . . . .  
\ ~ [] Linear -] 1 4 0 0  

ci~\ \ °. .~ ~ r a t u r  e ~1200 ~ 
"et ~ . . . . .  Heat ]~lux ~ ] 000 

t ,dk- +,-+ 
0 ~ 0 [  e::.~....~...$..~1.,,i,,,4--- ~8oo 

• I-" " " . . . . . . . .  J a  - ~ 6 0 0  =: 
l" Residual Principle, s v ~ / ~ .~  

I 
0.04 I- - I 

4 6 8 10 12 
No. Future Steps, r 

Fig. 4. Estimated temperature standard deviation and heat 
flux r.m.s, using the function specification method vs the 

number of future time steps. 

A cubic approximation with zero values for the first 
and second time derivatives at z~ = r is 

3 r 2 z i -  3rz~ + z3i 
qM+,-, = (IM--, +(qM--OM--~) 3 r ~ 3 r _ ~  ~ . 

RESULTS 

A measure of the difference between the measured 
and calculated temperature is needed. It should be 
analogous to the standard deviation of the data, which 
is known in the present case. An expression for the 
estimated standard deviation of the measured tem- 
perature Y~ is, 

[- 1 --1 . 2-11/2 

where l0 i is the calculated temperature. This expression 
can be used even if there is no prior estimate of the 
measurement errors. 

A similar equation to equation (19) can be given if 
the true applied heat flux is known, 

I / __~  I 11/2 
~q=, = , ~  ( q i - 4 3 2  , 

where q is the measured heat flux and 0 is the estimated 
value using an IHCP algorithm. It is only because the 
heat flux is measured in this problem that equation 
(20) can be evaluated. Note that there is a difference 
in the interpretation of equations (19) and (20). In 
equation (19), Yi is assumed to contain measurement 
errors, while in equation (20) q~ is assumed to be nearly 
errorless ; furthermore, #q~ contains errors from both 
errors in Y and bias in the algorithm [8]. Because the 
interpretations of equations (19) and (20) are differ- 
ent, different symbols are chosen. 

FUNCTION SPECIFICATION RESULTS 

Figure 4 shows values for sr  and #q~+ (solid and 
dashed lines, respectively) for the FSM as a function 
of the number  of future time steps r. Four  cases are 

(18) shown: q approximated as constant, linear, parabolic 
and cubic functions. One way of stating the residual 
principle is that the regularizing parameter, r, is found 
by making the estimated standard deviation of the 
data about  equal to the expected st. For  the q = C 
approximation, the value of r equal to 9 or 10 is 
obtained from Fig. 4 at the expected value of 
sr  = 0.083. For the other cases, a value of about  
r = 12 or 13 is appropriate;  the value of r = 13 is 
selected• These are large r values, indicating that the 
data shown by Fig. 2 poses a challenge for the methods 
which try to follow detailed changes in q. 

Also observe the dq~, curves (the dashed lines) in 
(19) Fig. 4. The min imum value is for the q = C approxi- 

mation with the others slightly larger. For  all cases 
the #q~, values shown in Fig. 4 are less than 10% of 
the maximum q(t), which is about  7800 W m -2. See 
the lowest dashed curve in Fig. 5 and the lower right 
axis. An  important  point is that the #q~+ values are 
insensitive to r. This is a good feature of the FSM. 
For a given case, the min imum #qr,. does not  precisely 
correspond to the r value given by the residual prin- 
ciple. However, these curves vary so gradually that 

(20) the choices of r given by the residual principle are 
quite acceptable. 

The results for the estimated heat flux using the Fig. 
2 data are shown in Fig. 5. Several curves are shown 
by displacing one above the other ; if the curves were 
plotted on the same axes, the values overlap and 
become indistinguishable. 

There are several obvious features of the results. 
First, there is smoothing of the abrupt  increases and 
decreases. Second, the results are not  identical, but  
are remarkably close. The cubic curve for r = 13 is 
not  markedly better than the q = C curve for r = 7. 
The human  eye favors the cubic results in Fig. 5, but  
the #q~+ is smaller for the q = C solution. The #q~s is 
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Fig. 5. Estimated heat flux values for the function speci- 
fication method for constant q basis functions (with r = 7, 
left axis), q linear (r = 13, right axis), q parabolic (r = 13, 

left axis) and q cubic (r = 13, right axis). 
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Fig. 7. Estimated heat flux values for the iterative reg- 
ularization method (upper figure 7 and 14 iterations) and 
Tikhonov regularization (lower figure for ~ = 1.0 x 10 s). 

greatly affected by the t rea tment  of  the values near 
the ab rup t  changes (near 2 and  22 s). 

Next  consider the results obta ined  by using two 
whole domain  methods.  The s r  and ~'trm~ values (lower 
and  upper  sets of  curves, respectively) are shown in 
Fig. 6 for the four cases : i terative regularizat ion and  
T ikhonov  regularizat ion with ~ = 10 -9, 5 .0x  10 ~ 
and  10 s K 2 m 4 W 2. F rom the residual principle, 

abou t  seven i terat ions are needed for the iterative 
regularizat ion method  and for T ikhonov  reg- 
ularization ~ should be abou t  10 s K 2 m 4 W 2 (from 

Fig. 6 to have s r  ~ 0.083 C). Notice tha t  the ~ .... 

values are abou t  the same values for the iterative reg- 
ular izat ion me thod  with seven i terat ions as obta ined 
using the FSM,  tha t  is abou t  700 W m -2 compared  
with the max imum value of  7800 W m 2. The ffq ...... 
decreases with the n u m b e r  of  i terat ions until  14 and 

0 .20  

0 .16  

C.) 0.12 

o.os 

O.04 

0.00 

' ' ' ' 1 ' ' • ' I ' ' ' ' I ' ' ' ' 

,'i a = l , 0 x l 0  -s] 
• ~=5.0x lO "9 ? 

X a = 1.0xl0 "9 p~ ;  
0 lter. Reg. J 

Temperatttre ¢ 
. . . . .  Heat Flux p~ 

1400eq 

1200 ~ 

1000 .~ 

800  k~  

600 

* i , i I , , , * i , , , , i * , J i 

10 20 30 40 

N u m b e r  o f  Iterat ions,  k 

Fig. 6. Estimated temperature standard deviation and heat 
flux r.m.s, using the iterative and Tikhonov regularization 

methods vs the number of iterations. 

then starts to increase. The opt imal  ~ for T ikhonov  
regularizat ion (10 s) gives abou t  the same value of  
~q .... (about  700 W m-2).  T ikhonov  regularizat ion 
takes considerably more i terat ions than  iterative reg- 
ularization,  even though  bo th  use the same direct, 
sensitivity and  adjoint-equat ions,  coupled with the 
conjugate  gradient  method.  For  this case of  abou t  200 
measurements ,  the T ikhonov  regularizat ion me thod  
converges in less than  28 iterations. 

The iterative regularizat ion is investigated for bo th  
the q = C and  linear approximat ions  (using the whole 
domain  approach) .  The results are indist inguishable 
for the same n u m b e r  of  iterations. Figure 7 shows 
the est imated heat  fluxes for bo th  seven (the residual 
principle value) and  14 (the min imum dqrm~ value) iter- 
ations. The seven i terat ion results are appreciably bet- 
ter to the eye than  the 14 i terat ion case. The reason 
that  the 6qro, ~ values in Fig. 6 are opposite is the differ- 
ence in values near the step increase/decrease, which 
is very difficult for the h u m a n  eye to assess. 

Two other  features of  the iterative regularization 
method are significant. Note  tha t  jus t  before heat ing 
starts and  just  after  it stops, some slight negative heat  
fluxes are estimated,  unlike the FSM.  The second fea- 
ture is tha t  the final est imated q (about  32 s) is zero. 
This is because the beginning estimate for all the qs is 
zero and  there is a lag in the t empera ture  response, so 
tha t  no informat ion  regarding the heat ing has been 
received in the T regarding q at  the final time. The 
FSM does not  a t tempt  to give a q value at  the final 
measured time, instead it stops r -  1 steps before the 
end. 

Figure 7 also shows the T ikhonov  regularizat ion 
results for 28 i terat ions (convergence) for ~ = 10 5. 
The results are similar to those for the i terative reg- 
ularization me thod  for seven i terations,  except the 



Some inverse heat conduction methods 3655 

behavior is better in Fig. 7 both before and after the 
steps, since there are no negative heat flux values 
before heating starts. 

If one compares the results from the different 
methods given above, it is amazing how close the 
agreement is, even though quite different methods are 
used. Based only on the minimum value of #q~ in Fig. 
6, the iterative regularization with about 14 iterations 
or Tikhonov regularization with 10-9 K 2-m2 W-2 are 
equivalent and have #q=, ~ 600 W m -2. Using the 
same criterion, the best result for FSM in Fig. 4 has 
the minimum value of 620 W m -2, which is for the 
q = C profile. These results correspond to values of 
sr somewhat less than that indicated by the residual 
principle, as used herein. For example, instead of 
0.083°C, the values for minimum #q~ are 0.055 and 
0.043°C, for Figs. 4 and 6, respectively. 

INVERSE HEAT CONDUCTION USING GREEN'S 
FUNCTIONS 

The Green's function solution method becomes an 
integral equation when it is applied to linear inverse 
heat conduction problems. The function specification 
method reduces this integral equation to a set of sim- 
ultaneous linear equations. For the sake of brevity, 
the following presentation is for a one-dimensional 
temperature field, although the procedure is equally 
applicable to multidimensional solutions. The alter- 
native Green's function solution method [16, equation 
(3.66)] is 

= T*(y, t) + f~ G(y, tly', O)[T(y', O) T(y, t) 

- T * ( y ' ,  0)] dy" +~ Jo Jo G(y, tlJ, ~) 

aT*(y',z)-]• , • x k t?2T*(Y"Z)-pc  - -  - (21) 
ay '2 aT joy or, 

where L is the thickness of the solid and T*(y, t) is a 
differentiable function that satisfies the same homo- 
geneous boundary conditions as T*(y, t). If ql(t) is 
the heat flux at y = 0 and q2(t) is the heat flux at 
y = L, then, a typical function for T*(y, t) is 

y2 y 
T*(y, t) = ~ -~  [ql (t) -q2(t)] - ~q~ (t). (22) 

In this approximation, the functions q,(t) and q2(t) 
are 

qi(t) = aio+aat+aat2+ "''; i = 1,2. (23) 

The substitution of T*(y, t) in equation (21) yields 
a linear relation for every measured internal tem- 
perature. Since there are more measurements than 
unknown parameters, least squares is used. 

The same set of data employed earlier was used to 
predict surface heat flux for a carbon-carbon sample. 

8000 I I I , 

¢ I1 

f-I .................... i 
= !i' : 

0.0 0.5 1.0 1.5 2.0 I " ~ t h ~ . _ _ .  

t l l l , , t l , , , , l l l l l l l l  I I 1 ' 1 ' '  ' 

10 20 30 
Time, 8 

Fig. 8. Estimated heat flux values at the mica-specimen inter- 
face using Green's functions and polynomial approximations 

over extended time regions. 

It is assumed that the 7800 W m -2 heat flux starts at 
t = 1.9 s at the heater site and the power is ended at 
21.9 s. The surface heat flux from mica to carbon- 
carbon is analytically computed and the results are 
plotted in Fig. 8 as a solid line. Notice the damped 
and lagged response at the mica/C-C interface com- 
pared to the heater input. The inverse conduction 
Green's function procedure is then used to predict the 
surface heat flux at this interface. The reason that this 
heat flux at the interface was estimated rather than at 
the heater/mica interface (as above) is that the use of 
a small number of constant-in-time functions (for 
carefully-selected time regions) matches the input heat 
flux almost precisely using Green's functions (and 
other solution methods). However, at the mica/ 
specimen interface, the heat flux cannot be as simply 
described, but q can be approximated by polynomials. 

Two cases are considered: one estimating q] with 
q2 = 0 and the other case estimating both ql and q> 
Measured temperature data at two thermocouple sites 
(mica/specimen and specimen/insulation interfaces) 
were used. 

Figure 8 shows the calculated heat flux ql denoted 
by circles for the case assuming q2 = 0. Based on 
examination of the temperature data, the duration of 
the test was divided into five time domains, 0-1.5, 
1.5-4.9, 4.9-21.9, 21.9-25 and t > 25. The boundary 
between two adjacent time domains was chosen where 
the change in dT/dt is large. Future time at the end of 
each time domain was added to improve the accuracy 
of computations. A smaller region of future time was 
added when the change in dT/dt are abrupt, e.g. 0.16 
s after the first time and the third time domains. This 
is because a large number of future steps can adversely 
influence the results when abrupt changes occur. The 
open circle data in Fig. 8 are the results of the com- 
putations and they agree very well with the direct 
analytical solution. 

The next step in this computation method is to 
simultaneously predict q] and q2 using the same set of 
experimental data. The results are also plotted in Fig. 
8 and can be compared with the other results. Figure 
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8 shows that the effect of q2 on q~ is small. The two 
sets ofqt results are nearly identical for t < 26 s. Also, 
the calculated values of q2 are small until t = 15 s. To 
study the effect of the initial rise in temperature, a 
second set of experimental data was used. The data 
were measured at 0.01 s time steps for a total period 
of 2.19 s. The results are shown in the inset of Fig. 8. 
The value of q2 is negligibly small. 

It is clear that the results using the Green's function 
with extended regions worked very well in this case. 
In the various methods described first, the surface 
heat flux is estimated at every time step. This has the 
advantage that it can be used in cases when the heat 
flux has rapid changes, such as in quenching, as well 
as slowly varying changes ; the time periods for these 
conditions do not have to be specified. A disadvantage 
of the first methods is that the results show some 
fluctuations caused by the measurement errors and 
the ill-posed nature of the problem. When the heat 
fluxes do not exhibit rapid variations (or the moments 
of rapid changes can be inferred), it is possible to 
produce smoothly varying heat fluxes by dividing the 
domain into a few regions. In such cases and for 
linear problems, the method of solution of the heat 
conduction equation, whether using an analytical 
method (such as Green's functions) or a numerical 
method (such as finite differences), will produce 
almost identical results. For convenience in pres- 
entation, the smoothing procedure by using low 
degree polynomials of different regions is described 
using the Green's functions; however, each of the 
methods given above will give almost identical results 
to those shown in Fig. 8 if the same polynomial 
approximations are used. 

COMPARISON OF COMPUTER TIME 

Two other aspects of comparison of the FSM and 
the regularization methods are mentioned. One is the 
simplicity of derivation. The FSM is simpler to derive 
because special sensitivity and adjoint equations do 
not have to be derived. Furthermore, for the present 
one-dimensional example, the FSM estimates are 
about as accurate as those produced by the iterative 
and Tikhonov (zeroth-order) regularization. In other 
cases it has been found that the FSM method is not 
quite as accurate as the regularization methods [8]. 

The second aspect relates to the computation time. 
The calculations were performed using about 200 time 
steps. In order to avoid questions regarding space 
discretization and also calculation of time steps, the 
computer times were obtained using numerical 
approximations of Duhamel's integral. Some finite 
difference calculations were independently performed 
both to verify the results and to obtain the solution 
for a unit step heat flux, which is needed in Duhamel's 
integral. In each of the above cases there is no tem- 
perature-variation of the thermal properties, hence no 
iterations are needed. A 486 IBM compatible 50 Mz 
computer was used with Microsoft FORTRAN. The 

FSM for r = 7 and 13 took 1.42 and 1.54 s, respec- 
tively. Hence, there is little difference in computer time 
between the r = 7 case the case of almost twice as 
large value r of 13. That behavior is not replicated for 
iterative and Tikhonov regularization (both depend 
mainly on the number of iterations). For seven iter- 
ations and computation time is 2.53 s and for 28 
iterations the time is about four times as large (9.61 
s). The FSM is more computationally efficient than 
the whole domain methods considered herein for the 
example considered. 

Other cases may yield different results; however, 
the analytical study of ref. [10] tends to confirm these 
results which use experimental data. 

SUMMARY AND CONCLUSIONS 

Several methods are compared for the solution of 
the inverse heat conduction problem of estimating the 
transient surface heat flux from interior temperature 
histories. This paper is unique in using actual tem- 
perature measurements and a known electrical heat 
input. The methods include the function specification 
method, iterative regularization, Tikhonov reg- 
ularization and Green's functions with the heat flux 
approximated by polynomials over a few time periods. 

The function specification method gave accurate 
results and is computationally efficient. The results 
using the iterative regularization method are excellent. 
Zeroth-order Tikhonov regularization gives com- 
parable results. However, the computation time is a 
factor of 2-4 as large for the Tikhonov vs iterative 
regularization. 

An important observation is that the three methods 
just mentioned above give excellent, but very similar, 
results. However, the function specification method is 
conceptually simpler and can be extended more read- 
ily to other parabolic problems. 

The Green's function method with extended time 
regions approximated by polynomials gave excellent 
results. The concept of using polynomials over 
extended time regions can be used with the other 
methods and almost identical results are obtained. 
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